On a family of A-hypergeometric systems with exponential rank jumps

María Cruz Fernández Fernández¹ Universidad de Sevilla

EACA 2012, Alcalá de Henares (Madrid)

¹Partially supported by MTM2010-19336 and FEDER, and Junta de Andalucía under grants FQM-5849, FQM333.

María Cruz Fernández Fernández Universidad de Sevilla On a family of A-hypergeometric systems with exponential rank

Definition

- Gel'fand, Graev, Kapranov, Zelevinsky (1987-1989).
- An A-hypergeometric system is a system of linear partial differential equations associated with a pair (A, β), where

$${\it A}=({\it a}_1\cdots{\it a}_n)$$
 is a full rank matrix, ${\it a}_i\in\mathbb{Z}^d$, $d\le n$

 $\beta \in \mathbb{C}^d$ is a vector of complex parameters.

Definition

Toric ideal:

$$I_{\mathcal{A}} = \langle \partial^{u_{+}} - \partial^{u_{-}} : u \in \mathbb{Z}^{n}, Au = 0 \rangle \subseteq \mathbb{C}[\partial]$$

where we denote $u = u_+ - u_-$, $u_+, u_- \in \mathbb{N}^n$ with disjoint support.

Example:
$$A = (2 3)$$
, $u = (3, -2)^t \in \ker A$, $I_A = \langle \partial_1^3 - \partial_2^2 \rangle$.

伺 ト く ヨ ト く ヨ ト

Definition

Euler operators: $E_i = a_{i1}x_1\partial_1 + \cdots + a_{in}x_n\partial_n$ where $(a_{i1} \cdots a_{in})$ is the *i*-th row of A, $i = 1, \ldots, d$.

A-hypergeometric ideal: $H_A(\beta) = DI_A + D\langle E_1 - \beta_1, \dots, E_d - \beta_d \rangle \subseteq D$ where $D = \mathbb{C}[x_1, \dots, x_n]\langle \partial_1, \dots, \partial_n \rangle$ is the Weyl Algebra.

Example: $A = (1 \ 3 \ 5), I_A = \langle \partial_1^3 - \partial_2, \partial_1^5 - \partial_3 \rangle$ $E - \beta = x_1 \partial_1 + 3x_2 \partial_2 + 5x_3 \partial_3 - \beta.$

伺 と く ヨ と く ヨ と

The rank of an A-hypergeometric system

- The rank of a system of linear P.D.E. is the dimension of the space of holomorphic solutions at nonsingular points.
- Assume $\mathbb{Z}A = \mathbb{Z}a_1 + \cdots + \mathbb{Z}a_n = \mathbb{Z}^d$ and denote $\Delta_A = \text{convex-hull}(0, a_1, \dots, a_n) \subseteq \mathbb{R}^d$. Normalized volume of A: $\text{vol}_{\mathbb{Z}^d}(A) = d! \text{vol}_{\mathbb{R}^d}(\Delta_A)$
- Gelfand-Kapranov-Zelevinsky, Adolphson, Saito-Sturmfels-Takayama: If $\beta \in \mathbb{C}^d$ is generic

 $\operatorname{rank}(H_A(\beta)) = \operatorname{vol}_{\mathbb{Z}^d}(A)$

The rank of an A-hypergeometric system

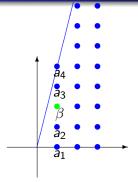
The first example of an A-hypergeometric system such that $\operatorname{rank}(H_A(\beta)) > \operatorname{vol}_{\mathbb{Z}^d}(A)$ (Sturmfels-Takayama, 1998):

$$A_{(2)}=\left(egin{array}{cccc} 1&1&1&1\\ 0&1&3&4 \end{array}
ight)$$
 and $eta=\left(egin{array}{cccc} 1\\ 2 \end{array}
ight).$

In this example $rank(H_{A_{(2)}}(\beta_{(2)})) = 5 > 4 = vol_{\mathbb{Z}^2}(A_{(2)}).$

Reason: β is a hole in the semigroup $\mathbb{N}A_{(2)}$.

The rank of an A-hypergeometric system



Cattani-D'Andrea-Dickenstein (1999): If d = 2 then rank $(H_{A_{(2)}}(\beta_{(2)})$ equals $\operatorname{vol}_{\mathbb{Z}^2}(A_{(2)}) + 1$ if β is a hole of $\mathbb{N}A_{(2)}$ or $\operatorname{vol}_{\mathbb{Z}^2}(A_{(2)})$ otherwise.

María Cruz Fernández Fernández Universidad de Sevilla On a family of A-hypergeometric systems with exponential rank

The rank of an A-hypergeometric system

- Saito-Sturmfels-Takayama (2000): vol_{Z^d}(A) ≤ rank(H_A(β)) ≤ 4^dvol_{Z^d}(A) for all β.
- Matusevich-Miller-Walther (2005): The map β ∈ C^d → rank(H_A(β)) ∈ N is upper-semi-continuous. The exceptional set

$$\{eta \in \mathbb{C}^d: ext{ rank}(H_{\!A}(eta)) > \operatorname{\mathsf{vol}}_{\mathbb{Z}^d}(A)\}$$

is a finite union of affine subspaces.

The rank of an A-hypergeometric system

Matusevich-Walther (2007): A family of examples (A_d, β_d) , $d \ge 2$, such that

•
$$\operatorname{vol}_{\mathbb{Z}^d}(A_{(d)}) = d + 2.$$

•
$$\operatorname{rank}(H_A(\beta)) = 2d + 1$$

Thus rank $(H_A(\beta)) - \text{vol}_{\mathbb{Z}^d}(A) = d - 1$ and rank $(H_{A_{(d)}}(\beta_{(d)})) / \text{vol}_{\mathbb{Z}A_{(d)}}(A_{(d)}) = 2 - (3/(d+2)) < 2$ Case d = 3:

$$A_{(3)} = \left(\begin{array}{rrrrr} 1 & 1 & 1 & 1 & 1 & 1 \\ 0 & 0 & 0 & 0 & 1 & 1 \\ 0 & 1 & 3 & 4 & 0 & 1 \end{array}\right) \text{ and } \beta_{(3)} = \left(\begin{array}{r} 1 \\ 0 \\ 2 \end{array}\right)$$

In this case, $\beta_{(3)}$ is again a hole in the semigroup $\mathbb{N}A_{(3)}$.

The rank of an A-hypergeometric system

- Saito (2002), Okuyama (2006): formula for rank(H_A(β)) under some assumptions.
- Berkesch (2011): General formula for rank($H_A(\beta)$).
- However, $\operatorname{rank}(H_A(\beta))/\operatorname{vol}_{\mathbb{Z}^d}(A) < 2$ in the examples in the literature.
- We construct examples where rank(H_A(β))/vol_{Z^d}(A) is exponential in d.

Recall that the direct sum of two matrices

 $A_1 \in \mathbb{Z}^{d_1 \times n_1}, A_2 \in \mathbb{Z}^{d_2 \times n_2}$ is the following $(d_1 + d_2) \times (n_1 + n_2)$ matrix:

$$A_1 \oplus A_2 = \left(\begin{array}{cc} A_1 & \mathbf{0}_{d_1 \times n_2} \\ \mathbf{0}_{d_2 \times n_1} & A_2 \end{array}\right)$$

where $0_{d \times n}$ denotes the $d \times n$ zero matrix.

Lemma

If A is the direct sum of two matrices $A_1 \in \mathbb{Z}^{d_1 \times n_1}, A_2 \in \mathbb{Z}^{d_2 \times n_2}$ then $\operatorname{vol}_{\mathbb{Z}A}(A) = \operatorname{vol}_{\mathbb{Z}A_1}(A_1) \cdot \operatorname{vol}_{\mathbb{Z}A_2}(A_2)$.

A + + = + + = + - =

Lemma

The A-hypergeometric system with $A = A_1 \oplus A_2$ and parameter $\beta = (\beta_1, \beta_2)$ decomposes as two hypergeometric systems for the same unknown (but disjoint sets of x_i, ∂_i -variables in the operators) corresponding to the pairs (A_1, β_1) and (A_2, β_2) respectively.

Corollary

For $A = A_1 \oplus A_2$ and parameter $\beta = (\beta_{(1)}, \beta_{(2)})$ we have $\operatorname{rank}(H_A(\beta)) = \operatorname{rank}(H_{A_1}(\beta_{(1)})) \cdot \operatorname{rank}(H_{A_2}(\beta_{(2)})).$

For
$$A = A_1 \oplus A_2$$
 and parameter $\beta = (\beta_{(1)}, \beta_{(2)})$ we have

$$\frac{\operatorname{rank}(H_{A}(\beta))}{\operatorname{vol}_{\mathbb{Z}^{d}}(A)} = \frac{\operatorname{rank}(H_{A_{1}}(\beta_{(1)}))}{\operatorname{vol}_{\mathbb{Z}A_{1}}(A_{1})} \cdot \frac{\operatorname{rank}(H_{A_{2}}(\beta_{(2)}))}{\operatorname{vol}_{\mathbb{Z}A_{2}}(A_{2})}$$

• Take
$$A_1 \in \mathbb{Z}^{d_1 \times n_1}$$
 and $\beta_1 \in \mathbb{C}^{d_1}$ with $\frac{\operatorname{rank}(H_{A_1}(\beta_{(1)}))}{\operatorname{vol}_{\mathbb{Z}^{d_1}}(A_1)} > 1.$

- Solution Consider $A = \bigoplus_{1}^{r} A_{1}$ and $\beta = (\beta_{1}, \dots, \beta_{1})$
- rank $(H_A(\beta))/\operatorname{vol}_{\mathbb{Z}^d}(A)$ is exponential on d.

- A 3 N

Theorem

There is a family of hypergeometric systems $H_A(\beta)$ such that $\operatorname{rank}(H_A(\beta))/\operatorname{vol}_{\mathbb{Z}^d}(A)$ grows like $(\sqrt[3]{7/5})^d$ where $d = \operatorname{rank}(A) \ge 2$.

All the examples of this family of hypergeometric systems decompose in examples of smaller hypergeometric systems. We can construct a different family with rank/volume exponential on d.

Let us see how for d = 4.

Berkesch (2011)

 $\mathsf{rank}(H_A(\beta))$ depends only on $\beta \in \mathbb{C}^d$, $\mathbb{N}A$ and Δ_A .

Thus, given a matrix A we can add a column $b \in \mathbb{N}A \cap \Delta_A$. Case d = 4 (previous family):

$$A = A_{(2)} \oplus A_{(2)} = \begin{pmatrix} 1 & 1 & 1 & 1 & 0 & 0 & 0 & 0 \\ 0 & 1 & 3 & 4 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 1 & 1 & 1 \\ 0 & 0 & 0 & 0 & 0 & 1 & 3 & 4 \end{pmatrix} \text{ and } \beta = \begin{pmatrix} 1 \\ 2 \\ 1 \\ 2 \end{pmatrix}$$

伺 と く ヨ と く ヨ と

Case d = 4 (previous family): $A = A_{(2)} \oplus A_{(2)}$

$$A = \begin{pmatrix} 1 & 1 & 1 & 1 & 0 & 0 & 0 & 0 \\ 0 & 1 & 3 & 4 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 1 & 1 & 1 \\ 0 & 0 & 0 & 0 & 0 & 1 & 3 & 4 \end{pmatrix} \text{ and } \beta = \begin{pmatrix} 1 \\ 2 \\ 1 \\ 2 \end{pmatrix}$$

•

・ 同 ト ・ ヨ ト ・ ヨ ト ・ ヨ

Here $\sqrt[d]{\operatorname{rank}(H_A(\beta))/\operatorname{vol}_{\mathbb{Z}^d}(A)} = \sqrt{5/4}$

Case d = 4 (previous family):

$$A = \begin{pmatrix} 2 & 2 & 2 & 2 & 0 & 0 & 0 & 0 \\ 0 & 1 & 3 & 4 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 2 & 2 & 2 & 2 \\ 0 & 0 & 0 & 0 & 0 & 1 & 3 & 4 \end{pmatrix} \text{ and } \beta = \begin{pmatrix} 2 \\ 2 \\ 2 \\ 2 \end{pmatrix}$$

Here $\sqrt[d]{\operatorname{rank}(H_A(\beta))/\operatorname{vol}_{\mathbb{Z}^d}(A)} = \sqrt{5/4}$

伺 ト く ヨ ト く ヨ ト

э

Case d = 4 (second family):

Here $\sqrt[d]{\operatorname{rank}(H_A(\beta))/\operatorname{vol}_{\mathbb{Z}^d}(A)} = \sqrt{9/8}$

伺 ト く ヨ ト く ヨ ト

э

Case d = 4 (last family):

Here d = 4, $\sqrt[4]{\operatorname{rank}(H_A(\beta))/\operatorname{vol}_{\mathbb{Z}^d}(A)} = \sqrt{9/8}$ and A is not a direct sum of smaller matrices. Similarly for all $d \ge 4$, $\operatorname{rank}(H_A(\beta))/\operatorname{vol}_{\mathbb{Z}^d}(A) \ge (\sqrt{9/8})^d$. While the known upper bound for rank $(H_A(\beta)/\operatorname{vol}_{\mathbb{Z}^d}(A)$ is 4^d (Saito-Sturmfels-Takayama), for the worst (or best) family we get that rank/volume grows like $(\sqrt[3]{7/5})^d$.

It is still an open problem to find a sharp upper bound for $\operatorname{rank}(H_A(\beta)/\operatorname{vol}_{\mathbb{Z}^d}(A))$.

Based on the paper

Exponential growth of rank jumps for A-hypergeometric systems. To appear in Revista Matemática Iberoamericana. (See also arXiv:1201.5090v1 [math.AG])

Thank you!

(日)

⊸∢ ≣ ≯